听书阁_书友最值得收藏的免费小说阅读网

第四章 戰車登天技法(7)-《巴塞麗莎的復國日記艾拉》


    第(1/3)頁

    院子里升起了一團篝火。那修女捧著一本書,坐在門外的一塊石頭上,給圍繞著她的孩子們講故事。

    艾拉在二樓默默地注視著他們,直到修女覺得天色太晚了讓孩子們回房間休息,這期間孩子們的每一個動作,都透著對那位修女的喜愛。

    如果這里不是亞伯拉罕正教會的教堂,而是七丘帝國的神廟,    那些祭司們會收留趕路的人么?會收養被遺棄的兒童么?會讓這些孩子們如此喜愛么?

    ——這種東西,應該還是看個人的吧?

    艾拉甩了甩頭,把剛剛出現在腦中的那種荒謬想法給甩了出去,然后掏出一疊紙來擺在桌子上。那上面是一些還沒解決的幾何問題。

    其中一個是一條拋物線,一條線斜著切過它,與拋物線一同圍成了一個弓形。戈特弗里德給艾拉的任務是計算這個弓形的面積。

    艾拉想了想,以弓形的直邊為底邊,    又在拋物線上選了一個點,    一同連成了一個大三角形。然后以大三角形的另外兩條邊為底邊,    各自又選了拋物線上的一個點連成了兩個小三角形。

    艾拉凝視著這三個三角形。按戈特弗里德計算圓面積的方法,這些三角形如果不斷繪制下去,它們的面積之和會越來越接近這個弓形的面積吧。

    但是,這樣繪制的三角形根據選點的不同,會有各種各樣的大小,且無規律。如果要計算面積和,必須要制定一個統一的繪制規則。

    艾拉嘆了口氣,把這張紙給撕了,重新畫了一張。這一次,她把那根直線平行移動,直到切拋物線于一點。艾拉以這個點為頂點繪制了第一個大三角形。然后她用了同樣的方法,繪制了下一級的兩個三角形。

    這樣一來,問題立刻就變得清晰了。經過一段幾何證明之后,艾拉發現這兩個小三角形的面積和是大三角形的四分之一。且每一級的兩個小三角形,面積之和都是前一級大三角形的四分之一。

    艾拉暫定第一個大三角形的面積為a,這個弓型的面積為s,那么,    弓型的面積就是這樣的:

    s=a+a/4+a/16+a/64+…

    這是一個無限擴張下去的算式,看起來絕對得不出結果。

    ——又是無限。

    艾拉拋下筆,長長地嘆了口氣。能運算無限的,估計也只有數學之神了吧。

    然而那個面積為一的正方形邊長卻在一旁警示著艾拉:不能就這樣放棄。

    用戈特弗里德的話來說,既然是一條有限的線段,那就不可能是無限的。同樣的,這個弓型顯然也是一個有限的面積,從幾何上來看,它就在那里,與其他的圖形相必并沒有什么特別之處。

    艾拉拍了拍腦袋,再次凝視著那個有限的圖形,以及列在下方的那個無限擴展的算式。

    突然間,她靈機一動,拿起筆將等式的兩邊同時乘了一個4。根據等式的法則,等式此時仍然成立。而這次,等式變成了下面的樣子:
    第(1/3)頁

主站蜘蛛池模板: 龙海市| 双峰县| 芜湖县| 巩义市| 古浪县| 黄浦区| 申扎县| 江西省| 晋宁县| 新巴尔虎右旗| 托里县| 徐汇区| 迁西县| 绥棱县| 公主岭市| 萝北县| 营口市| 祁东县| 滕州市| 青田县| 晋江市| 闽清县| 丹东市| 连南| 九龙县| 临清市| 无锡市| 竹溪县| 新建县| 玉屏| 莱阳市| 昌平区| 纳雍县| 双辽市| 石柱| 民县| 石棉县| 西青区| 大渡口区| 逊克县| 平远县|